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SYMMETRY IN THE PROBLEM OF VIBRATION
OF A POLAR-ORTHOTROPIC

NON-HOMOGENEOUS PLATE ON
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The problem of bending vibration of a polar-orthotropic non-homogeneous elastic plate
on an elastic foundation is considered, and the invariance of the problem-equation under
an inversion transformation with respect to a circle is proved. As a corollary, the
optimization problem (the ‘‘best’’ position of the point mass or point support, which
optimizes the plate fundamental frequency) is considered and certain geometrical
inequalities, which reduce the optimization domain, are proved. Computational time
economy generated by the inequalities for the optimization problem is illustrated with
numerical examples: (a) the ‘‘best’’ position of the point mass on segment and ring-sector
plates; (b) the ‘‘best’’ radius of the ring support for annular plates. Some other corollaries
from the problem-equation inversion invariance are given.
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1. INTRODUCTION

The problem of the bending dynamics of a polar-orthotropic non-homogeneous elastic
plate on an elastic foundation is considered. This problem is relevant to the design of
various structural members. It is proved that the problem-equation is invariant under an
inversion transformation with respect to a circle. On this basis, certain corollaries which
may be used in design are proved. The corollaries are illustrated with numerical examples.

The paper consists of two parts. Sections 2–7 of the main part are as follows: 2.
Invariance of the problem-equation; 3. Optimal mass position; 4. Numerical examples of
optimal mass position; 5. Optimal support position; 6. Numerical examples of optimal
support position; 7. Generalizations. The auxiliary part consists of Appendices 1–6
to sections 2–7, respectively, which contain proofs, some corollaries and additional
materials.

In section 2, the mathematical description of the bending dynamics problem is given and
the application of the geometrical inversion transformation is considered. The use of
inversion for problems of plate bending and 2-D elasticity has been considered in many
works [1–9]. Here it is assumed that orthotropy tensor components are constant along the
radius and are arbitrary functions of the angular co-ordinate. One then has the result that
if two tensor components satisfy only one condition (namely that the sum of these two
components is constant), then the problem-equation is invariant under inversion.
Examples of industrially used materials which practically satisfy this only one condition
of invariance are given.
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In section 3, the optimization problem of the ‘‘best’’ position of a point mass on the
plate, which minimizes the plate eigenfrequency, is considered and, as a corollary from
section 2, the geometrical inequality is given. It is proved that if the plate is inversion
symmetric with respect to the circle (the ‘‘number’’ of such plates is infinite—like the
‘‘number’’ of plates which are mirror symmetric with respect to a straight line), then a
search for the ‘‘best’’ mass position may be made only in part of plate domain.

In section 4, the computational time economy generated by the inequality of section 3
in the optimization process is illustrated by numerical examples: the ‘‘best’’ point mass
position on segment and ring-sector plates. Numerical values of the time economy are
given.

In section 5, the optimization problem of the ‘‘best’’ position of a point support, which
maximizes the plate fundamental frequency, is considered and (also as for the corollary
from section 2) the inequality which reduces the domain of optimization is proved.

In section 6, the computational time economy generated by the inequality of section 5
in the optimization process is illustrated by a numerical example: the ‘‘best’’ radius of a
ring support for annular plates in case of axisymmetric vibration.

Section 6 is, in some sense, a ‘‘paper within a paper’’—it contains the detailed numerical
contribution to the annular plate vibration problem, which is the theme of many
publications. The plate fundamental frequency is calculated as a function of the support
radius in the whole interval between the inner and outer radii of the annular plate, for
the respective plate parameters (characteristics of the orthotropy tensor, elastic support
and mass distribution). The numerical method used is tested by comparison with exact
results and with results given in other publications. Therefore, the section 6 results may
be considered as useful for design (independently of the main theme of the paper).

From the point of view of the theme, the main corollary from this ‘‘paper within a
paper’’, i.e., section 6, is the illustration of the ‘‘theoretical’’ result of section 5: all ‘‘best’’
radii calculated in section 5 satisfy the inequality proved in section 5. Therefore, for their
determination it is sufficient to scan only part of the interval between the inner and outer
radii of the plate. Numerical values of the time economy are given.

In section 7, generalizations and some other corollaries from the problem-equation
invariance are noted (applications to non-inversion-symmetric plates, impact problem,
forced vibration, viscoelastic materials, etc.).

2. INVARIANCE OF THE PROBLEM-EQUATION

(i) Dynamic bending of a polar-orthotropic non-homogeneous elastic plate on an elastic
foundation is considered. Plate domain A is bounded, simply- or multiply connected, and
of arbitrary shape. Let r, u be polar co-ordinates with origin O (A+ 1A. It is given as
follows: on 1A—kinematic conditions (w, 1w/1n as a functions of position and t); and in
A (w)t=0, (1w/1t)t=0 and load q(r, u, t). (Here and below the commonly used symbols are
not explicitly defined.) The plate rigidity tensor is such that its ‘‘physical’’ co-ordinates (i.e.,
co-ordinates in the local orthonormal basis of the r, u system) are functions only of u:
Dijkl =Dijkl(u), where D1111 =D11, D2222 =D22, D1122 =D12 and D1212 =D66. In the isotropy
case D1111 =D2222 =D=Eh3/(12(1− m2)), D1122 = mD and D1212 = (1/2)(1− m)D=Gh3/
(12(1− m2)). The problem-equation (see, e.g., reference [10]) is rewritten as follows in a
form that is convenient for the invariance proof:

D1111w,rrrr +2D0r−2w,rruu +D2222r−4w,uuuu

+2D1111r−1w,rrr +2D0,ur−2w,rru −2D0r−3w,ruu
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A
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+2D2222
,u r−4w,uuu +(D1122

,uu −D2222)r−2w,rr

+2(D2222 −2D1212),ur−3w,ru +(D2222
,uu +2D2222 +2D0)r−4w,uu

+(D2222
,uu +D2222)r−3w,r +4D1212

,u r−4w,u = q− cw−mw,tt . (2.1)

Here D0 =D1122 +2D1212, ( *),r 0 1( *)/1r, ( *),u 0 1( *)/1u, and so on.
(ii) Let there be a circle with radius r (0Q rQa) and centre at O. One can write the

following transformation based on geometrical inversion-mapping [2, 4]:

r= r2/r*, u= u*, dS= p4 dS*, p= r/r*, t= t*,

w(r, u, t)= p2w*(r*, u*, t*), q(r, u, t)= p−6q*(r*, u*, t*),

c(r, u)= p−8c*(r*, u*), m(r, u)= p−8m*(r*, u*). (2.2)

Here and below a symbol with an asterisk denotes a result of transformation.
It is possible to show (see Appendix 1) that if D1111, D2222 and D1212 are arbitrary functions

of u and D1122 =C−D2222, where C is an arbitrary constant, then equation (2.1) is invariant
under transformation (2.2).

On this basis, all inversion applications used in various problems for isotropic
homogeneous plates [1–9] may be used for plates of type (2.1). In other words, there is
a one-to-one correspondence between problems for polar-orthotropic non-homogeneous
plate A and its inversion image A* (see Figure 1).

(iii) The material condition

D1122(u)+D2222(u)= constant. (2.3)

(iii, 1) Each plate with any arbitrary Dijkl =constant satisfies equation (2.3). Each plate
with Dijkl(u)$ constant, which satisfies equation (2.3) and (otherwise) is arbitrary, may be
fabricated by use of reinforcement, composites, structural orthotropy, etc.

(iii, 2) Consider a reinforcement plate. It is known that if (a) the reinforcement ‘‘acts’’
in only the r-direction, (b) the reinforcement coefficient is varied in only the u-direction,
and (c) the ‘‘main’’ (before reinforcement) material is homogeneous, then D1111(u) varies
with u significantly and other Dijkl vary weakly. Therefore, in that very well known case,
it is possible to accept D1122(u)+D2222(u)1 constant and exploit the benefits generated by
the inversion-invariance of equation (2.1). Numerical examples of such materials are given
in Appendix 1.

Figure 1. A polar-orthotropic non-homogeneous plate A and its inversion image A*.
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3. OPTIMAL MASS POSITION

Consider now a polar-orthotropic non-homogeneous plate that is inversion-symmetric
with respect to the circle with radius rs (0Q rs Qa): that is, A*=A and 1A*= 1A. Such
domains form an infinite class (as do domains which are mirror-symmetric with respect
to a straight line). Many ‘‘classical’’ domains belong to this class: circles, co- and eccentric
rings, ring sectors, segments, all lunes, and so on. Members with such domains are used
in various structures. We remark that the radius of the circle of inversion is denoted as
rs only if this circle is a circle of symmetry (i.e., if 1A*= 1A); in the general case the
notation r is used—see section 2.

The plate contour is rigidly clamped. For brevity, an elastic foundation and distributed
mass are absent. The concentrated mass M is fastened to the plate at the point aM (rM , uM );
the plate material density is neglected, so

m(r, u)=Md(r− rM , u− uM ), (3.1)

and one has a system ‘‘inertialess plate–point mass’’. The eigenfrequency of the system
depends on the position of aM : v=v(aM ).

Consider the following optimization problem: find point (points) aMmin (rMmin , uMmin ) such
that for all points aM one has v(aM )ev(aMmin ).

It is possible to show (see Appendix 2) that

rMmin q rs . (3.2)

Inequalities for a group of similar optimization problems are also given in Appendix 2.
Inequality (3.2) narrows the area of searching, i.e., it reduces the search time, and therefore
may be used in optimization.

4. NUMERICAL EXAMPLES OF OPTIMAL MASS POSITION

Although expression (3.2) is valid for any irregular 1A= 1A*, it is clear that for
illustration it is sufficient to consider plates of only ‘‘classical’’ shape.

Figure 2. The segment plate geometry.
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(i) Consider a plate, the domain of which is the segment 1–2–3–4–5–6 with 0Q bQ p

(see Figure 2). At first, assume that the plate is isotropic and homogeneous.
Let d[i, j] denote the relative distance between points i, j such that d[3, 6]=1,

d[7, 6]=0·5 and x= d[aMmin , 6] is a search distance (relative) from the ‘‘weakest’’ point of
the plate to point 6. From the physics point of view aMmin is on line 3–7–6 between points
7 and 6 (because the part 2–7–4–5–6–1 of plate is ‘‘weaker’’ than part 2–3–4–7), so
0Q xQ 0·5.

However, the segment has a circle of inversion-symmetry with a centre at 10, so
(according to inequality (3.2)) the point aMmin is between points 7 and 8, and so
d[8, 6]Q xQ 0·5.

Consider two segments (two plates). After calculations one has: b=90° (semi-circle)
d[8, 6]=0·414Q xQ 0·5; b=60° (see the scale in Figure 2) d[8, 6]=0·464Q xQ 0·5.

One sees that inequality (3.2) decreases significantly the volume of searching. Note that
we do not refer here to the many publications with solutions of this problem. We only
use this problem as an evident illustration. Inequality (3.2) is also true for any
polar-orthotropic non-homogeneous plate with condition (2.3).

(ii) Let the optimization time economy generated by expression (3.2) be $=F'/F, where
F is the full area of optimization (without considering expression (3.2)) and F' is the
‘‘useless’’ area (according to expression (3.2)). Therefore, the values 1, $ and 1−$ relate
to the full time, saved time and the ‘‘true’’ time (i.e., the time of searching the ‘‘useful’’
subdomain), respectively. Such an expression for $, based on proportionality between time
and area, is a rough approximation, but for purposes here it is sufficient. For
segment-plates with b=90° and 60° one has $90 =0·414/0·5=82·8% and $60 =0·464/
0·5=92·8%. It is more correct for the evaluation of inequality (3.2) to omit the additional
information xQ 0·5 and assume F=1; then one obtains smaller, but more adequate values
of time economy: $90 =0·414/1=41·4% and $60 =0·464/1=46·4%.

(iii) Consider a polar-orthotropic homogeneous plate, the domain A of which is a sector
of a concentric ring with radii aqRout qRint q 0 and central angle 2bq 0. A corollary
from inequality (3.2) is as follows: for any values of Dij , Rout , Rint and
b, rMmin q rs =(RoutRint )1/2. This is also valid for any Dijkl(u) with condition (2.3). In the case
considered the economy in optimization time is $=F'/F=(rs −Rint )/(Rout −Rint ). If, for
example, Rint /Rout =0·5, then $=41·4%; if Rint /Rout =0·2, then $=30·9%.

Note that $E 50%. The limit value $=50% corresponds to rs =a: i.e., to the case
of a domain which is mirror-symmetric with respect to a straight line. Inequality (3.2) is
valid not only for inversion-symmetric plates (see Appendix 3).

5. OPTIMAL SUPPORT POSITION

Consider a plate with inversion-symmetric domain A and with inversion-symmetric mass
distribution (ISMD). A distributed elastic foundation is absent (for brevity). What is the
ISMD? One can consider it in detail. There is a close analogy between ISMD and a
mirror-symmetric mass distribution for a plate, which is geometrically mirror-symmetric
with respect to a straight line. In our case of inversion symmetry the function for, say,
rE rs mint (r, u) may be given arbitrarily; then the function for re rs mout (r, u) is obtained
as the inversion image of mint (r, u) (see expression (2.2)): mout (r, u)= (rs /r)+8mint (r2

s /r, u).
Therefore, any function m(r, u)= {rE rs : mint (r, u); re rs : mout (r, u)} is an ISMD. In other
words, the set of them is the infinite set of solutions of the functional equation
m(r, u)= (rs /r)8m(r2

s /r, u). (Compare this with the mirror-symmetric mass distribution,
which is the solution of the functional equation m(x, y)=m(x, −y), where x and y are
orthonormal co-ordinates.)
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As an example of ISMD, let mint (r, u)= f(u), where f(u) is arbitrary; then
mout (r, u)= (rs /r)8f(u), and then m(r, u)= {rE rs : f(u); re rs : (rs /r)8f(u)} is the ISMD.

So, one has a plate with ISMD. Let that plate have an elastic support with rigidity
CEa in point aC (rC , uC ). It is clear that v(i) =v(i)(aC ).

Consider the following optimization problem: find the point (at least one)
aCmax (rCmax , uCmax ) such that, for all aC , v(1)(aC )Ev(1)(aCmax ). (For brevity, the simplified
formulation is given here.)

It is possible to prove (see Appendix 4) that there exists point aCmax with

rCmax e rs . (5.1)

(We remark that if C=a, then all ‘‘maximal’’ points are disposed symmetrically with
respect to symmetry-circumference.)

Now let the plate have a system of N absolutely rigid supports at points aC = {aCi}. As
above, it is clear that v(i) =v(i)(aC ).

Consider the following optimization problem: find the point-system aCmax such that, for
all other point-systems aC , v(1)(aC )Ev(1)(aCmax ).

It is possible to prove that if some point-system is ‘‘maximal’’, then its inversion-
image is also the ‘‘maximal’’ point-system. Analogous statements may be formulated in
cases of a prearranged internal domain BWA and in cases of system of supports with
Ci Qa.

6. NUMERICAL EXAMPLES OF OPTIMAL SUPPORT POSITION

The aim of the examples is to illustrate the reduction of the domain of searching.
Consider an annular plate (bounded by two concentric circumferences) with clamped edges
and with an additional elastic support, which is uniformly distributed along the
circumference with radius rsup . The support circumference is concentric with the plate
contour. The aim of the problem is to find the optimal value of rsup , which maximizes v(1).
At first consider the case of an inversion-symmetric mass distribution (ISMD), that is a
non-uniform distribution, and thereafter the ‘‘illustration’’ is extended to the case of a
uniform mass distribution.

Plates with such additional intermediate ‘‘line-wise’’ elastic supports are often used as
members of various structures; see, e.g., reference [11]. Note that reference [11] also deals
with optimization, but there the position of a line elastic support (or supports) is (are) given
and the best orientation of anisotropy of plate material is determined: such an orientation
which maximizes the eigenfrequency v(1). Here the plate anisotropy is fixed and the radius
rsup of the ‘‘circumference–elastic–support’’, which maximizes v(1), must be obtained. One
can also note reference [12], where the optimal position of ‘‘point-wise’’ additional
supports is investigated, and references [13–18], where the circular, annular, isotropic and
orthotropic plates with concentric support ring (rings) and non-inversion-symmetric mass
distribution are considered and where the functions v(i)(rsup ) are investigated.The studies
in references [13–18] were made for various values of the problem parameters (Dijkl, support
stiffness, boundary conditions, plate thickness geometry functions h(r), etc.) and by
various calculation methods. Some of those results are used below for testing of numerical
method used in this section.

The contents of this section are as follows: (i) Problem description; (ii) Results and
discussion; (iii) Conclusion. The numerical method description, with its testing and some
corollaries, is given in Appendix 5.



rsup rsup

C = C0/rsupC = constant
(b)(a)
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Figure 3. Examples for the optimization problem of ‘‘best’’ rsup : (a) C is independent of rsup and is a given
constant; (b) C is inversely proportional to rsup (C0 is a given constant). C denotes the support stiffness (related
to the unit of length of the support circumference).

(i)  

The plate domain is the ring with 0Q rint E rE rout Qa. The radius of inversion
symmetry rs =(rintrout )1/2. Only axisymmetric eigenvibrations w(r) sin (v(1)t) are considered
(up to the end of this section, w is the eigenfunction). The boundary conditions are

r= rint : w=0, w,r =0; r= rout : w=0, w,r =0. (6.1, 6.2)

The plate has an inversion-symmetric mass distribution (ISMD). To construct the ISMD
one can (see the previous section) arbitrarily assume mout (r) for, e.g., the subdomain
rs E rE rout . Let, e.g., mout =constant=m0. Then, for subdomain rint E rE rs , one obtains
the mint as an inversion image of mout : i.e. (from expression (2.2)), mint =(rs /r)+8m0, and

m(r)=mint (r)*mout (r)= {rE rs : (rs /r)+8m0; re rs : m0}. (6.3)

The problem-equation is (from equation (2.1))

D1111w,rrrr +2D1111r−1w,rrr −D2222r−2w,rr +D2222r−3w,r =−c(r)w+v2mw, (6.4)

where Dijkl relates to the local orthonormal basis, m relates to the area unit,
c(r)=Cd(r− rsup ) and where C is the elastic support stiffness related to the unit of length.
The results of section 5 are valid for the case (a) 1C/1rsup =0 and for the class of functions
C(rsup ), particularly for the case (b) 1[2prsupC(rsup )]/1rsup =0; that is, C(rsup )=C0/rsup . Both
cases (a) and (b) have simple mechanical reference (see Figures 3(a) and (b)); below, for
brevity, only case (a) will be considered.

T 1

l=v(1)(m0/D1111)1/2(rout)2 versus Cnd for case
mnd 0 1, D2222

nd =1, jsup =0·75

Cnd l

0 89·25
10+1 89·53
10+2 92·03
10+3 113·58
10+4 219·31
10+5 246·34
a 246·34
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Consider the following optimization problem (a particular case of the problem of section
5): find rsup max (at least one value) such that, for all rsup , the inequality v(1)(rsup )Ev(1)(rsup max )
is valid.

According to the corollary from section 5, there exists rsup max e rs . To illustrate this
corollary, the functions v(1) =v(1)(rsup ) for various plate parameters will be calculated.

One can introduce the non-dimensional quantities

j= r/rout , jint =. . . , jsup =. . . , jout =1, js = rs /rout =(jint )1/2,

D2222
nd =D2222/D1111,

l=v(1)(m0/D1111)1/2(rout )2, mnd (j)=m(routj)/m0, wnd (j)=w(routj),

d(j− jsup )= routd(routj− routjsup ), Cnd =(C/D1111)(rout )3, (6.5)

and rewrite expressions (6.4), (6.1) and (6.2). For calculation the plate domain is divided
into two parts, A (jE jsup ) and B (je jsup ) and the member −Cndd(j− jsup )wnd (which
appears in the equation after non-dimensionalization) is relocated from the equation into
the junction condition. Therefore one has two functions wA

nd and wB
nd , which are defined on

the subdomains A and B respectively and which satisfy

wnd,jjjj +2j−1wnd,jjj −D2222
nd j−2wnd,j +D2222

nd j−3wnd,j = l2mnd (j)wnd , (6.6)

j= jint : wA
nd =0, wA

nd,j =0; j=1: wB
nd =0, wB

nd,j =0; (6.7, 6.8)

j= jsup : wA
nd =wB

nd , wA
nd,j =wB

nd,j , wA
nd,jj =wB

nd,jj , (6.9)

wB
nd,jjj =wA

nd,jjj −CndwA
nd . (6.10)

The problem is solved by the initial-parameters method, and using the Runge–Kutta
algorithm. The method is tested by comparison with ‘‘exact’’ method results based on using
Bessel function approximations [19–21]; the results are shown in Table 1. Because the
modulus of the differences between the respective eigenfrequency parameters is less than
0·001, the data given in Table 1 belongs to both (numerical and ‘‘exact’’) methods. The
present numerical method is denoted as method N and the ‘‘exact’’ one as method E.
Method N is also tested by comparison with results of references [17, 18, 22–24]. A detailed
description of method N with its testing is given in Appendix 5.

T 2

l=v(1)(m0/D1111)1/2(rout)2 versus jsup for case m=m(r)

D2222
nd =1 D2222

nd =10 D2222
nd =0·1

ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
jsup Cnd =5000 Cnd =a Cnd =5000 Cnd =a Cnd =5000 Cnd =a

0·50 78·45 78·45 82·49 82·49 78·03 78·03
0·55 80·71 99·14 84·70 103·28 80·30 98·71
0·60 95·11 124·72 98·71 128·94 94·74 124·29
0·65 118·96 156·54 121·92 160·87 118·66 156·10
0·70 143·07 187·63 145·12 192·36 142·86 187·15
0·75 137·93 168·43 140·71 172·86 137·65 167·98
0·80 118·84 139·76 122·27 144·03 118·49 139·33
0·85 101·71 118·20 105·43 122·40 101·33 117·77
0·90 87·92 101·73 91·82 105·88 87·51 101·30
0·95 79·69 88·78 83·71 92·87 79·27 88·36
1·00 78·45 78·45 82·49 82·49 78·03 78·03
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T 3

Optimal radii jsup max and maximal eigenfrequencies lmax

D2222
nd Cnd jsup max lmax

1 a js =(2)−1/2 188·54
1 5000 0·716 145·65

10 a js =(2)−1/2 193·29
10 5000 0·717 147·70
0·1 a js =(2)−1/2 188·05
0·1 5000 0·716 145·44

(ii)   

Consider an annular plate, the domain of which is a concentric ring with radii jint =0·5
and jout =1. The radius of geometrical symmetry js =(jintjout )1/2 = (0·5)1/2. The plate has
ISMD (6.3). Values of l for D2222

nd = {1; 10; 0·1}, Cnd = {a; 5·0e+3; 0} and support
positions jsup = {0·5; 0·55; . . . ; 0·95; 1} obtained by the N-method are given in Table 2.
Optimal support positions jsup max (such that dl/djsup =0) and corresponding maximal
eigenfrequencies lmax obtained also by the N-method are given in Table 3 (note that
prepared Turbo–Pascal-realization of the N-method is applicable to all of the parametric
space).

For comparison l for the plate has been calculated, with the same set of initial data,
but with uniform mass distribution mnd =1 (a discussion of this is given in Appendix 5).
The results obtained by the N-method (case D2222

nd =1 is obtained by both methods N and
E) are shown in Table 4. For this plate the values of jsup max are very near to 0·75 and values
of lmax are very near to l(0·75), as shown in Table 4.

The results of Tables 2–4 (i.e., l(jsup ) polygon-like approximations) are partly illustrated
in Figure 4 (the accuracy level of Figure 4 is less than that of the tables). As is clear from
Tables 2 and 3 and Figure 4 in all cases of inversion-symmetric plates jsup max e js .
Therefore, one could search for the optimal point not over the whole domain {0·5, 1}, but
only over the subdomain {0·707, 1}. This is an illustration of the results of section 5. The
economy in time (i.e., ‘‘saved’’ time) is $=(0·707−0·5)/0·5=41·4%.

T 4

l=v(1)(m0/D1111)1/2(rout)2 versus jsup for case m=constant

D2222
nd =1 D2222

nd =10 D2222
nd =0·1

ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
jsup Cnd =5000 Cnd =a Cnd =5000 Cnd =a Cnd =5000 Cnd =a

0·50 89·25 89·25 93·82 93·82 88·78 88·78
0·55 91·03 105·01 95·52 109·37 90·57 104·56
0·60 103·18 127·00 107·19 131·28 102·77 126·56
0·65 125·12 158·60 128·51 163·92 124·78 158·16
0·70 153·79 204·20 156·45 208·83 153·52 203·73
0·75 174·66 246·34 176·95 252·65 174·43 245·70
0·80 153·73 204·10 157·57 210·52 153·33 203·45
0·85 125·07 158·52 129·43 164·25 124·62 157·94
0·90 103·16 126·95 107·67 132·16 102·69 126·42
0·95 91·03 104·99 95·59 109·81 90·56 104·49
1·00 89·25 89·25 93·82 93·82 88·78 88·78
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Figure 4. (extracted from Tables 2–4). The eigenfrequency parameter l versus support position jsup for
isotropic plate (D2222

nd =1) for cases of uniform and non-uniform mass distribution (mnd =1 and mnd =mnd(j)).
Cnd values: –0 –, 0; – – – –, 5000; ——, a. w, lmax .

As the ‘‘side’’ effect generated by these examples (Tables 1–4), note that the orthotropy
change in the range 0·1 ED2222

nd E 10 and the support rigidity change in the ranges
{0ECnd E 10+1}, {10+5 ECnd Ea} have little influence on the fundamental eigenfrquency
of axisymmetric vibrations of the plates considered here.

(iii) 

Here some of the results of this section are restated.
(iii, 1) For axisymmetric vibration of a clamped–clamped annular orthotropic plate,

the functions l(jsup ) have been given. As was noted at the beginning of this section,
the vibration problems for annular plates considered are of engineering interest and
have been considered in a number of publications (e.g., the analogous relations
between eigenfrequency parameters l(1) 0 l, l(2), l(3) and jsup for axisymmetric vibration
of an annular isotropic plate simply supported at both edges with jint =0·1 and mnd =1
are given in reference [18]). Thus, the data given in Tables 1–4 and Figure 4 may be
useful.

(iii, 2) The ‘‘main’’ result of this section (from the point of view of the aim of this paper)
is the numerical illustration of inequality (5.1). Examples show that if it is necessary to
find only the jsup max with lmax (but not the whole function l(jsup )), then one need search
only the subdomain jsup e js . This provides a significant reduction of calculation time. For
the case jint =0·5 the saved time $=41·4%. Extensions of this result to the case of
non-inversion-symmetric plates are noted in Appendix 5.

7. GENERALIZATIONS

Here some additional corollaries from the inversion-invariance of equation (2.1) are
briefly noted.

(i) If plate domain A, mass distribution m(r, u) and elastic foundation stiffness
coefficient c(r, u) are inversion-symmetric, then the general problem may be easy split into
two, symmetric and antisymmetric (in the sense of relations (2.2)). The proof is analogous
to the proof in the case of mirror-symmetry with respect to a straight line. The usefulness
of such splitting is well known. This has the following ‘‘physical’’ corollary: each
antisymmetric eigenfunction has a zero-line, which coincides with the circumference of
inversion symmetry; analogous symmetrization is possible for each dynamical initial
boundary value problem.
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(ii) Each plate with any geometrical form (in general, without inversion-symmetry) and
with

m(r)=H/r8, c(r)=K/r8, (7.1)

where H and K are arbitrary factors, is isospectral to a plate with constant m and c. With
the help of this statement, one can obtain the exact spectrum (values and functions) for
non-uniform m and c, through the known spectrum of a plate with uniform m and c.

It is well known that one of the important aspects of the validity of exact results is the
following: they may be used as trial results for evaluation of accuracy of approximate
methods. Therefore, the exact results for plates with equations (7.1) may be used for
evaluation of approximate methods which are oriented to the numerical solution of
spectral problems for non-homogeneous bodies (FEM, FDM and others). Examples are
given in Appendix 6.

(iii) It is possible to show that optimization inequalities can be generalized to various
problems connected with transversal impact [26] and forced vibration [27].

(iv) The relations described can be generalized to a linear viscoelastic plate with a
non-elastic foundation, on a foundation with ‘‘one-sign-reaction’’ (see, e.g., reference [28]),
and to plane problems of elasticity and linear viscoelasticity.

(v) In Appendix 3, the triangular plate with a clamped contour is considered, and it is
noted that the position of a point mass, which minimizes the eigenfrequency, satisfies the
inequality (3.2). In section 6 the annular plate with both contours clamped and with
uniformly distributed mass was considered and it was shown numerically (Figure 4) that
the ‘‘best’’ radii of ring-supports (elastic and rigid) are greater than the radius of inversion
symmetry of plate domain rs =(routrint )1/2. In Appendix 5 it is noted that the same situation
exists if the plate outer contour clamping is replaced by simple supporting.

In all the above-listed examples, the plates are non-inversion-symmetric, but the
inequalities of sections 3 and 5 are valid. It is possible to give many such examples. From
the physics and engineering point of view, it is easy to show such evident ‘‘disturbances’’
(of contour, boundary conditions, mass distribution, stiffness distribution, etc.) of
inversion-symmetric plates, which ‘‘destroy’’ the plate symmetry, but which produce the
optimal point ‘‘motion’’ in the only ‘‘away-direction’’ from the symmetry-circle of the
initial plate. For such plates, the inequalities of sections 3 and 5 retain their validity.
Therefore, these inequalities may be considered as a starting point for the optimization
of many real non-symmetric plates.
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APPENDIX 1

(i) Here we prove the invariance of equation (2.1) under the transformation (2.2) stated
in section 2. As is known, the invariance of an equation

F(x, u, a)=0, (A1.1)
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where x, u and a are argument, function and parameter; under some transformation

x*= fx (x), u*= fu (u), a*= fa (a), (A1.2)

means the following. We say that (A1.1) is invariant under (A1.2) if

F[ f −1
x (x*), f−1

u (u*), f−1
a (a*)]=0t F(x*, u*, a*)=0. (A1.3)

We return to expressions (2.1) and (1.2). We express from equations (2.2) the quantities
without an ‘‘asterisk’’ in terms of those with ‘‘an asterisk’’. After substituting these
expressions in equation (2.1), taking into account condition (2.3) and making some
identical transformations one obtains the same equation (2.1), but in which all quantities,
except the Dijkl, are replaced by those with ‘‘an asterisk’’. This finishes the proof. For the
homogeneous isotropic case it was proved in references [2, 4], and for the homogeneous
orthotropic case in reference [7].

(ii) In section 2 it is noted that for industrial materials reinforced only in the radial
direction the quantity D1122(u)+D2222(u) changes weakly in comparison with D1111(u).
Therefore, for those materials the condition (2.3) may be approximately accepted and the
invariance of equation (2.1) under transformation (2.2) may be used. Here we give two
examples of such a material. Note again that the reinforcement here is such that stiffness
tensor co-ordinates Dijkl(u) related to the local orthonormal basis are independent of r and
are functions of only u.

(ii, 1) Example 1. Consider a ‘‘classical’’ idealized three-layer plate, in which the plate
bending rigidity Dijkl(u) is generated only by in-plane rigidities of two outer thin layers.
The distance between outer layers h=constant�d(u), where d(u) is the thickness of one
layer (both layers are the same). Each outer layer is fabricated from isotropic and
orthotropic sublayers with thicknesses dis =constant and dor = dor (u). Therefore, d(u)=
dis + dor (u). The material stiffness tensors are constant: Tis

ijkl
,u =Tor

ijkl
,u =0. Note that

T1111
is =T2222

is =Tis ; T1122
is = mTis ; T1212

is =0·5(1−m )Tis =G; Tis =E/(1− m2) and T1111
or =E1/

(1− m1m2); T2222
or =E2/(1− m1m2); T1122

or = m1E1/(1− m1m2); T1212
or =G12; m1E1 = m2E2. There-

fore

Dijkl(u)= [Tijkl
is dis +Tijkl

or dor (u)]h2/2. (A1.4)

For evaluation of a change of D1122(u)+D2222(u) one must compare it with a change of
D1111(u). Let umin and umax be some values of u and let the orthotropic sublayer thickness
be such that

dor (umin )= dor min =0, dor (umax )= dor max , (A1.5)

where dor max is some value. With these assumption and this notation we can write, from
equation (A1.4)

Dijkl(umin )=Tijkl
is dish2/2, (A1.6)

Dijkl(umax )= [Tijkl
is dis +Tijkl

or dor max ]h2/2. (A1.7)

Now write

k=D1111(umax )/D1111(umin ), (A1.8)

p=[D1122(umax )+D2222(umax )]/[D1122(umin )+D2222(umin )]. (A1.9)

The parameters k and p represent the increasing of D1111(u) and D1122(u)+D2222(u),
respectively, by ‘‘going’’ from umin to umax . It is clear that if one writes the relation p= p(k),
one will be able to compare p and k: i.e., the ‘‘evaluation problem’’ will be solved.

Rewrite equations (A1.8) and (A1.9) with the help of equations (A1.6) and (A1.7) as

k=1+(T1111
or /T1111

is )dor max /dis , (A1.10)
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p=1+[(T1122
or +T2222

or )/(T1122
is +T2222

is )]dor max /dis . (A1.11)

Expressing dor max from equation (A1.10) and substituting it in equation (A1.11), one
obtains

p=1+(k−1)[(T1122
or +T2222

or )/T1111
or ]+1[(T1122

is +T2222
is )/T1111

is ]−1, (A1.12)

or, in ‘‘technical’’ form,

p=1+(k−1)[(m2 +1)E2/E1]/(m+1). (A1.13)

Relation (A1.13) is the answer to the question.
Now consider some numbers. Take an isotropic material with a ‘‘typical’’ Poisson ratio

of m=0·3. As an orthotropic material, take, e.g., from reference [29], graphite–epoxy plies
with E1 =181·0 GPa, E2 =10·30 GPa, m2 =0·28 and G12 =7·17 GPa. Let k=1·5, for
example. Then, from equation (A1.13), p=1·028. This means that if D1111(u) increases (by
‘‘going’’ from umin to umax ) by 1·5 times, then the value of D1122(u)+D2222(u) increases by
only 2·8%. Therefore, one can accept

D1122(u)+D2222(u)1 constant. (A1.14)

(ii, 2) Example 2. Consider as a second example of material (A1.14), another ‘‘classical’’
type of sandwich plates. In reference [25] an annular three-layer plate is considered, in
which the middle layer is steel (m=0·33) or aluminium (m=0·22) and the outer layers are
‘‘Ultra-high-modulus graphite–epoxy’’—UMGE (E1 =310 GPa, E2 =6·2 GPa, m2 =0·26,
G12 =4·1 GPa). Let h=constant and d(u) be the thicknesses of the inner and outer layers.
For such a plate,

Dijkl(u)=T ijkl
is g

+h/2

−h/2

z2 dz+2T ijkl
or g

+h/2+ d(u)

+h/2

z2 dz. (A1.15)

Let umin and umax again be two values of u and let d(umin )=0. It is easy to show that for
plate (A1.15) the relations (A1.12) and (A1.13) are valid. Assuming k=1·5 again and
substituting the materials’ numerical data in equation (A1.13), one finds that p=1·0098
(for steel) and p=1·0103 (for aluminium). This means again that if D1111(u) increases by
1·5 times, the sum D1122(u)+D2222(u) increases by only 11%.

These two examples show that for very well known classes of materials reinforced only
in the r direction Dijkl(u) one can accept equation (A1.14) approximately, and use all
benefits, which are generated by the inversion-invariance stated in section 2. For other
materials and kinds of reinforcement, the sum D1122(u)+D2222(u) may be even nearer to
a constant. Recall again that if the plate is homogeneous, then the polar-orthotropic tensor
Dijkl may be otherwise arbitrary.

APPENDIX 2

(i) Here the inequality (3.2) (see section 3) is proved. The considered plate has one
dynamical degree of freedom, so

v=(MG(aM , aM ))−1/2, (A2.1)

where G(a, b) is the Green function of the static problem. From plate symmetry and
expression (2.2) it follows that

G(a*, a*)= (rs /ra )4G(a, a): (A2.2)
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i.e., if ra Q rs , then

G(a*, a*)qG(a, a). (A2.3)

After differentiation of both sides of equation (A2.2) with respect to r, one finds that if
r= rs , then dG(r, u; r, u)/dr$ 0. This finishes the proof.

(ii) Often in applications the optimization aim is to maximize v, but not to minimize
it. Without reference to the relative complexity of these two problems, consider an
extended formulation. Let domain BWA (such that 1B+ 1A=/) be an arbitrary given
interior domain. Denote Cout =(B+ 1B)+ (rq rs ); Cint =(B+ 1B)+ (rQ rs ) and
Cmid = 1B+ (r= rs ).

Consider the following optimization problem: find aMmin $B+ 1B and aMmax $B+ 1B
such that, for all aM $B+ 1B, v(aMmin )Ev(aM )Ev(aMmax ).

It is possible to show that

aMmin $Cout +Cint �C*out +Cmid , aMmax $Cint +Cout �C*int +Cmid , (A2.4)

where ‘‘the asterisk’’ means the inversion image (see above). The proof is analogous to
that of inequality (3.2). If B is symmetric, i.e., B*=B, then Cint =C*out and expressions
(A2.4) reduce to

aMmin $ (B+ 1B)+ (rq rs )+ 1B+ (r= rs ),

aMmax $ (B+ 1B)+ (rQ rs )+ 1B+ (r= rs ). (A2.5)

If 1B is such that at all points b $1B+ (r= rs ) the radius is tangential to 1B, then the last
terms in expressions (A2.4) and (A2.5) may be cancelled. Note the results of section 3 and
Appendix 2 are generalized (in some sense) in the case of a polyharmonic equation.

‘‘Near’’ statements may be given for various formulations of optimizations problems in
cases of a mass system and continuously distributed mass and elastic foundation.

APPENDIX 3

In section 4, the inequality (3.2) was illustrated by two examples of inversion-symmetric
plates. Here an example is given of the validity of inequality (3.2) for the case of a
non-inversion-symmetric plate. Consider a segment plate 1–3–5 with bQ 90° (see
Figure 2). Draw tangents to arc 1–3–5 at points 1 and 5, and denote the intersection points
as 11 (in Figure 2 these tangents and point 11 are not shown). Thus, one obtains the
isosceles triangle 1–11–5. Let this be a triangular plate with a clamped contour. From
the physics point of view it is clear that by ‘‘transformation’’ of the segment plate 1–3–5
into triangle 1–11–5 the ‘‘best’’ point will ‘‘move’’ in a direction away from the symmetry
circle. Therefore inequality (3.2) will retain its validity. It is easy to give other similar
examples.

APPENDIX 4

Here, a proof of the inequality (5.1) of section 5 is presented. Let the support, which
has the given stiffness coefficient C and is located at point aCmax with rCmax Q rs , generates
the eigenfrequency v(1)(aCmax ) such that, for all points aC , v(1)(aC )Ev(1)(aCmax ). According
to expression (2.2), there exists the same plate, but with support at the symmetrical point
a*Cmax with rCmax q rs , which has the same v(1)(a*Cmax )=v(1)(aCmax ). The stiffness coefficient
of the new support C*QC (according to expression (2.2)). Now increase the stiffness
coefficient of the new support up to the given level C. As is known, addition to the stiffness
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coefficient of some part of an elastic system does not decrease the eigenfrequency. This
finishes the proof. Proofs of other statements of section 5 are similar to the given proof.

APPENDIX 5

(i)        6
A version of the initial parameters method is used. The solution on A+B is represented

as wnd (j, l)=P[1]w[1](j, l)+P[2]w[2](j, l), where w[i] are solutions of the Cauchy problem
for equation (6.6) with ‘‘standard’’ initial conditions {0; 0; 1; 0}, {0; 0; 0; 1} at point j= jint

and with ‘‘jumps’’ Dw[i]
,jjj (6.10) at point j= jsup (case Cnd =a has some evident

distinctions); P[i] satisfy the system, which is generated by the boundary conditions (6.8)
at point j=1; the eigenfrequency l is obtained from the characteristic equation
F(l)=0(l− E lE l+), where F(l) is the determinant of a 2-matrix and l− and l+ are
known limits. The Cauchy problem for equation (6.6) is solved by an often exploited
version of the Runge–Kutta method: equation (6.6) is reduced to a system
y(i) = f (i)(j, y(1), . . . , y(4)) and the known algorithm y(i)

n+1 = y(i)
n +(Dj/

6)(k(i)
1 +2k(i)

2 +2k(i)
3 + k(i)

4 ) is used. The numbers of j-steps in the subdomains nA
step and nB

step

are determined on the basis of an assumed general number of steps nstep = nA
step + nB

step in
proportion to the lengths of the subdomains (with rounding). In all calculations below it
is assumed that nstep =100 and the 8-byte size of numbers (Borland Turbo-Pascal) is used.

(ii)     

The approximate initial parameters method based on the Cauchy problem solution by
the Runge–Kutta procedure described above is applied to a plate with jint =0·5,
jsup =0·75, D2222

nd =1 and mnd =1, and the function l(Cnd ) is constructed. The same
function is constructed by an ‘‘exact’’ method based on the Bessel functions polynomial
approximation [19–21]. As was assumed in section 6, the numerical method and ‘‘exact’’
one used are denoted as the methods N and E (and, if necessary, the letters N and E will
be used as indices). After comparison, it turns out that

=lN − lE =Q 0·001. (A5.1)

Values of l with two digits after the decimal point (i.e., digits generated by method N as
well as by method E) are given in Table 1.

Additional testing is based on results from some publications. The case jint =0·5,
D2222

nd =1, Cnd =0 and mnd =1 was considered in reference [22] (see also reference [23]) by
using the Bessel functions approximation (the result is l=89·2), in reference [24] by using
the Chebyshev polynomial approximation solution (the result was given in graphical form),
in reference [17] by using the Rayleigh–Ritz method with the Chebyshev polynomial
approximation (the result is l=89·251) and in reference [18] by using the Galerkin method
with a finite element model (the result is l=89·25). Our result is l=89·25 (obtained by
both methods N and E; condition (A5.1) is satisfied). The difference between this value
and the graphical result of reference [24] is no greater than 1%.

The case jint =0·5, D2222
nd =10, Cnd =0 and mnd =1 was considered in reference [24] by

using the Chebyshev polynomial approximation solution (the result was given graphically).
Our result is l=93·82 (obtained by the N-method). The difference is no greater than 1%.

The case jint =0·3, jsup =0·5, Cnd =a, mnd =1 and D2222
nd = {0·02; 50} was considered in

reference [17] by using the Rayleigh–Ritz method with the Chebyshev polynomial
approximation. Values of D2222

nd correspond to the two orientations of ‘‘Ultra-high-modulus
graphite–epoxy’’, UMGE, and are taken from reference [25]. The result is
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l= {77·562; 104·01}. Our result is l= {77·42; 103·76} (obtained by the N-method).
Additionally, we considered the isotropic case D2222

nd =1 and obtained the result l=78·05
(by methods N and E; condition (A5.1) is satisfied).

Comparisons with E-method results and with results of the publications mentioned show
that the N-method with nstep =100 has a sufficient accuracy.

(iii)        5  -- 

Inequality (5.1) is valid not only for inversion-symmetric plates. As an example, consider
the plate with ISMD (6.3) considered in section 5. Decrease the mass density in the
subdomain rE rs from m0(rs /r)+8 to a value m0; in other words, transform (by the removal
of ‘‘excess’’ mass) the plate with ISMD into the plate with m=m0 = constant (the uniform
mass distribution is not inversion-symmetric). It is clear that by such a change of the plate
the inequality (5.1), jsup max e js remains in force (for an illustration, see Table 4 and
Figure 4). It is also clear that there exists an infinite class of analogous changes of mass
distribution, for which the inequality (5.1) is valid. To give another example, replace the
rigid clamping on the outer contour by simple supporting. It is clear that such a
transformation of boundary conditions retains the validity of the results of section 5.
Therefore, one can say that there exist such evident changes in mass distribution, boundary
conditions, plate contour, elasticity tensor Dijkl, and so on, which transform the
inversion-symmetric plate into a non-inversion-symmetric one, for which the results of
section 5 remain valid.

APPENDIX 6

In section 7 it was noted that an arbitrary plate with mass distribution (7.1) is isospectral
to a plate with uniformly distributed mass. It was also noted that this statement may be
used for testing of numerical methods. Here this possibility is illustrated.

Return to section 6 and consider the plate with mnd 0 1, jint =0·5, D2222
nd =1, Cnd =a

and jsup =0·75. The result, i.e., l, was obtained (see Table 1) by exact and numerical
methods (the E-method- and the N-method): lE =246·34271 and lN =246·34287 (here
more digits are given than in Table 1). Therefore, one can say that the N-method, applied
to the plate with mnd 0 1, gives satisfactory results. However, what is the accuracy of the
N-method if mnd =mnd (j)? The answer may be obtained if one has some plate with mnd (j)
for which the exact solution is known.

Relation (7.1) provides such a possibility. After inversion-transformation with respect
to the circle of js one obtains the plate with m*nd =(js /j)+8, jint =0·5, D2222

nd =1, C*nd =a
and j*sup =(js )2/jsup =2/3. (Note that this m*nd (j) is a ‘‘very’’ non-uniform distribution:
m*nd (jint )=16, m*nd (jout )=0·0625.)

For this plate, according to expression (7.1), l*E = lE. Therefore, one has a plate with
non-uniform m*nd and with known l*E . After application of the N-method to this plate, one
obtains l*A =246·34324. Evidently, the absolute error is 3·3 times greater than that for the
case mnd =1, but (because of the negligibly small relative error) the N-method with
nstep =100 may be considered as a satisfactory approach. Therefore, this statement of
section 7 helps to indicate the possible applicability of numerical methods to problems with
a non-uniform mass distribution.


